高级用法
约 767 字大约 3 分钟
2025-03-16
注
请确保在 LLaMA-Factory 目录下执行下述命令。
目录
使用 CUDA_VISIBLE_DEVICES(GPU)或 ASCEND_RT_VISIBLE_DEVICES(NPU)选择计算设备。
LLaMA-Factory 默认使用所有可见的计算设备。
示例
LoRA 微调
(增量)预训练
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml指令监督微调
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml多模态指令监督微调
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
llamafactory-cli train examples/train_lora/qwen2vl_lora_sft.yamlDPO/ORPO/SimPO 训练
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml多模态 DPO/ORPO/SimPO 训练
llamafactory-cli train examples/train_lora/qwen2vl_lora_dpo.yaml奖励模型训练
llamafactory-cli train examples/train_lora/llama3_lora_reward.yamlPPO 训练
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yamlKTO 训练
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml预处理数据集
对于大数据集有帮助,在配置中使用 tokenized_path 以加载预处理后的数据集。
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml在 MMLU/CMMLU/C-Eval 上评估
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml多机指令监督微调
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml使用 DeepSpeed ZeRO-3 平均分配显存
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml使用 Ray 在 4 张 GPU 上微调
USE_RAY=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ray.yamlQLoRA 微调
基于 4/8 比特 Bitsandbytes/HQQ/EETQ 量化进行指令监督微调(推荐)
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml在 NPU 上基于 4 比特 Bitsandbytes 量化进行指令监督微调
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bnb_npu.yaml基于 4/8 比特 GPTQ 量化进行指令监督微调
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml基于 4 比特 AWQ 量化进行指令监督微调
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml基于 2 比特 AQLM 量化进行指令监督微调
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml全参数微调
在单机上进行指令监督微调
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml在多机上进行指令监督微调
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml多模态指令监督微调
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2vl_full_sft.yaml合并 LoRA 适配器与模型量化
合并 LoRA 适配器
注:请勿使用量化后的模型或 quantization_bit 参数来合并 LoRA 适配器。
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml使用 AutoGPTQ 量化模型
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml保存 Ollama 配置文件
llamafactory-cli export examples/merge_lora/llama3_full_sft.yaml推理 LoRA 模型
使用 vLLM+TP 批量推理
python scripts/vllm_infer.py --model_name_or_path path_to_merged_model --dataset alpaca_en_demo使用命令行对话框
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml使用浏览器对话框
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml启动 OpenAI 风格 API
llamafactory-cli api examples/inference/llama3_lora_sft.yaml杂项
使用 GaLore 进行全参数训练
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml使用 APOLLO 进行全参数训练
llamafactory-cli train examples/extras/apollo/llama3_full_sft.yaml使用 BAdam 进行全参数训练
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml使用 Adam-mini 进行全参数训练
llamafactory-cli train examples/extras/adam_mini/qwen2_full_sft.yamlLoRA+ 微调
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yamlPiSSA 微调
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml深度混合微调
llamafactory-cli train examples/extras/mod/llama3_full_sft.yamlLLaMA-Pro 微调
bash examples/extras/llama_pro/expand.sh
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yamlFSDP+QLoRA 微调
bash examples/extras/fsdp_qlora/train.sh计算 BLEU 和 ROUGE 分数
llamafactory-cli train examples/extras/nlg_eval/llama3_lora_predict.yaml